

UP Scorecard

Enabling safe and sustainable food packaging decisions

Florian Suter

Scientific Officer / Project Manager at the Food Packaging Forum Foundation

ZWE Webinar April 5th, 2022

Sustainable food packaging choices – unwrapped

A free, easy-to-use web-based tool to assess the sustainability impacts of common foodware and food packaging choices.

UP Scorecard in a nutshell

Product vision

To foster safe and sustainable food packaging by enabling intuitive, science-based packaging decisions in procurement and beyond.

Food service industry with huge purchasing power could provide transformative market signal Would greatly reduce high environmental burdens and serious health risks Challenge Lack of technical expertise and/or time to evaluate leads to mostly unrealized opportunity UP Scorecard: intuitive, science-based packaging decisions for procurement and beyond

How does it work

The UP Scorecard assesses commonly used foodware and food packaging products with a comprehensive, coherent, and science-based method to provide the food service industry with the information it needs to make safe and sustainable purchasing decisions. It is free and available online for all to use.

A multi-stakeholder approach

UP Scorecard – a Single-Use Material Decelerator (SUM'D) tool

Developed by the Single-Use Material Decelerator (SUM'D), a multi-stakeholder group including leading global food service companies, NGOs and technical experts.



Project Leader

Host Organization

Fiscal Sponsor

Supporter

Tool insight

Beverage Containers

Change Container Selection

US Recoverability Averages

Custom Composting and Recycling

		▶ ?	◀▶ ②	◆▶ ②	♦ ?	◆▶ ②	< ?	?
Container Type		Plastic Pollution g plastic leakage	Chemicals of Concern 2 worst to 20 best	Climate g CO ₂ -eq	Water use L of water	Sustainable Sourcing 1 worst to 5 best	Recoverability 1 worst to 5 best	Summary Score
stainless steel bottle Reused 100 times 30% recycled content	:	0.0	11 😑	37.9 🕕	0.4	5 🕕	5 🕕	93% 🛨
glass bottle Reused 25 times 33% recycled content	:	0.0	11 😑	83.1 🕕	0.8 🛨	5 🕕	5 🕕	90% 🕂
carton 0% recycled content	:	0.2 🕕	2 🗷	112.9 🕕	0.9	2 🔸	1 🗷	50% –
glass bottle 33% recycled content	:	0.2	11 😑	642.1	4.3 🕠	3 😑	3 😑	46% –
aluminum can 50% recycled content	:	0.0	2	263.0 1	6.1 X	3 🛑	3 😑	45% –
PET bottle 6% recycled content	:	1.2 🕠	2	196.5 🔨	3.2 🛑	2 \\	3 😑	41% —
bioPET (30%) bottle 0% recycled content	:	1.2 🕠	2	197.0 1	3.5 🛑	2 😺	3 😑	40% 🔱
HDPE bottle 0% recycled content	:	1.8 💌	2	254.6	2.6	1 😮	3 😑	31% 🔱

UP Scorecard metrics

Quantitative metrics

Climate impact

Indicator: grams CO₂ equivalents (gCO₂e)

Amount of carbon dioxide equivalent

emissions

Water use

Indicator: liters of water consumed Consumptive use of surface and ground water (blue water use)

Plastic pollution

Indicator: grams of plastic leakage

Mass of plastic that enters the

environment

Chemicals of Concern (CoC)

Indicator: scale 2 (worst) – 20 (best)

Possible presence of CoC and level of material inertness

Recoverability

Indicator: scale 1 (worst) – 5 (best)

Potential to be recovered for commercial use or converted into beneficial material

Sustainable sourcing

Indicator: scale 1 (worst) – 5 (best)

Percentage of post-consumer recycled content included and certification involved

CoC metric – starting point to raise awareness

Overall CoC

Sum of two sub-scores

CoC presence score

presence of intentionally added chemicals of concern and the **reliability** of the information provided

based on a list for known food contact chemicals of concern (Food Chemicals of Concern List), prioritized and grouped into three tiers

<u>Basis</u>: research and information provided by NGO's and industry associations, including FPF's Food Contact Chemical Database (FCCdb).

Inertness score

inertness of the food contact material, which is used as a proxy for the propensity for potentially hazardous chemicals to migrate from the packaging into food and the environment

based on expert judgement (materials without consensus get lowest score)

The CoC metric is work in progress and contributes to the following efforts:

- Increase transparency along the supply chain
- Provide a pathway towards safer chemistry in materials
- Ensure hazardous substances are limited or eliminated
- Close information gaps by assessing and verifying safer materials
- Encourage and amplify sustainable product innovations

Chemicals of Concern – used definition

A chemical of concern (CoC) is a chemical substance that has one or more of the following hazard properties:

Carcinogenic, mutagenic, toxic to reproduction [CMR]

Endocrine disruption [ED]

Persistent, bioaccumulative and toxic [PBT]

Very persistent and very bioaccumulative [vPvB]

Persistent, mobile and toxic [PMT]

Ensure acceptance / use of the UP Scorecard

- Full transparency: fully accessible methodology, content, and supporters
- Science-based methodology: based on the latest science and expert judgment
- Free and easy access: available for everyone online and easy to use
- Independent and broad-based community engagement: developed and managed by an established multi-stakeholder group including leading global food service companies, NGOs, and technical experts
- Consider wide variety of sustainability impacts: broad spectrum of six different environmental and human health impacts considered

Thank you!

Thank you for your attention! Let us know if you have any questions.

Web: https://upscorecard.org/

Mail: info@upscorecard.org

Backup slides

Outlook

In addition to further development/maintenance of the current beta version, further upgrades with new functionalities are planned/being discussed, including:

Regionalization

Choose from different default regions (USA, Europe, Asia, ...) to calculate scores.

Languages

Choose between different languages (English, French, German, ...).

Information

Get further, easy to use information/materials (factsheets, infographics, ...).

Customization

Use further options (add new container, ...) to test your specific products.

Products/container types

Get more products/container types (reusables, bioplastic, ...) to choose from.

Personalization

Use an account option to test/provide your own materials/data.

Metrics

Get scores for additional metrics (real costs, biodiversity loss, ...).

Connectivity

Interact with/get data from other tools and databases (ChemSec's marketplace, ...).

Further ideas?

Let us know. We are very interested in user-based feedback.